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ABSTRACT

This report describes a computing procedure for obtalning the coordinates
and velocity of a near earth satellite from measurements of its range and/or
angular position in the sky. The procedure, first suggested by Vinti (1959),
differs from other computing procedures in that the oblateness potential is
included in the analytical solution of the equations of motion. This solution
is expressed in terms of elliptic integrals of the first, second and third
kinds. The modulus of the elliptic integrals is of the order of magnitude of
the coefficient of the second term in the harmonic expansion of the earth's
gravitational potential, so that the series expansions of the elliptic integrals
converge rapidly. In the computing program coded from thls procedure, the ellip-
tic integrals are evaluated in subroutines which, from the viewpoint of program-
ming, number of locations, and number of operations are entirely comparable to
subroutines for the elementary functions. The procedure applies to near earth
satellites for all values of eccentricity less than unity, and for all inclina-
tions with the trivial exception that for polar orbits, the celestial longitude
is indeterminate in the immediate vicinity of the celestial poles. Drag forces,
solar radiation forces, etc., are included by means of a "variation of constants"
method.
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A DESCRIPTICN OF A NEAR-EARTH SATELLITE ORBIT
COMPUTATION PROGRAM USING

OBLATE SPHEROIDAL COORDINATES N

1, Introduction

The equations of motion of a near-earth satellite have received much atten-
tion in recent years. No solution of these equations involving a finite number
of elementary functions, or integrals of elementary functions, has been found.
Numerical integration of the equations presents serious practical difficulties
because of the round-off error, the truncation error, and the problem of improv-
ing initial conditions from observations. The lack of an analytical solution,
and the practical difficulties associated with direct numerical integration have
led to the modification of older methods and to the development of newer approx-
imate algebraic-numeric methods [see, for example, Ref., 2 - 7]. These approxi-
mate methods are based on the computation of small motions relative to a refer-
ence orbit. The reference orbit is obtained analytically; the small "residual"
motions are computed by (a) expanding the disturbing functions in a Fourier
series [Ref. 2, 3], or (b) by numerical integration [Ref. 4, 5]. Each of these
methods requires a literal algebraic development. The complexity of the compu-
tational procedure, that is, the order of terms which must be retained in the
algebraic development to insure accuracy, and the problems of computing time,
computer size, and so on, is determined largely by the reference orbit selected.
The path of an earth satellite for an arc of, say, one revolution is approxi-
mately Keplerian, so that at first sight the logical choice for the reference
orbit is a Keplerian orbit. Nevertheless, the deviation of the actual path
from a Keplerian orbit is great enough to introduce objectional complexities

into a literal development.

A study of the computational problems associated with the orbits of
artificial earth satellites over arcs of many revolutions leads to the con-
clusion that a reference orbit based on Keplerian motion is not the optimum

one. A number of modified reference orbits have been devised [Ref. 5,6,7].
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In an important paper, Sterne [Ref. 8] pointed out that by including a part

of the oblateness potential in the Hamiltonian, an exact analytical solution

of the Hamilton-Jacobi equation yielded a skewed, non-periodic reference orbit
which was competitive in accuracy to a Keplerian orbit with first order per-
turbations. Garfinkle [Ref. 9] investigated the various forms of the solution
of the Hamilton-Jacobi equation obtained by including part of the oblateness
potential in the Hamiltonian. In these two papers, the Hamiltonian is expressed
in spherical polar coordinates, and only part of the quadrupole moment term in
the harmonic expansion of the earth's potential is included with the monopole
term. Vinti [Ref. 1 ] demonstrated the existence of a rotationally symmetric
solution of Laplace's equation in oblate spheroidal coordinates which (a) fits
the experimentally determined values of the earth's gravitational potential
within +0.2 parts per million, and which (b) is in a form which permits an
exact analytical sclution of the Hamilton-Jacobi equations. The gravitational
force due to the earth's oblateness is the overwhelmingly important non-central
force acting to disturb the path of motion of near-earth satellites from a
Keplerian orbit, for all satellites which are not so near as to be brought

down quickly by atmospheric resistance. Vinti's method makes it possible to
incorporate this largest non-central force into the analytical solution in a
relatively simple manner. The reference orbit should be competitive in accu-
racy with a Keplerian orbit with very high order perturbations; comparison of
the results of Vinti's method, as formulated in this paper, with precise
numerical integrations of the equatioms of motion, and the comparison of com-
puted with actual observations on existing satellites over long arcs, confirm
this. The remaining non-central forces are small, so that conventional per-

.

turbation procedures are conveniently applied.

The purpose of this paper is to give a formulation of Vinti's method
applicable to the computation of satellite orbits. In this formulation, the
kinetic equations of motion are transformed into standard elliptic integrals
of the first, second and third kinds, with arguments analogous to the true
anomaly and the argument of latitude in Keplerian motion. The two equations
which replace Kepler's equation are numerically inverted to obtain the argu-

ments at a given time. The formulation is well adapted to digital computer
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1 The elliptic integrals may be evaluated in subroutines which,

applications.
from the viewpoint of programming, number of locations, and number of operations
are no different from subroutines for elementary functions. The procedure re-
quires significantly fewer computer internal storage locations, and requires
much less computing time than a perturbed Keplerian motion procedure of com-

parable precision.

Orbit computation programs based on the equations given in this paper have
been coded at the Rich Electronic Computer Center, Georgia Institute of
Technology, and at the Langley Research Center, NASA.
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2. Vinti's Solution

Oblate spheroidal coordinates are defined by [Ref. 11, p. 662].

sziz + ¢c2)(1 - n3) cos o

b
i

NV(E2 + c2)(1 - 42) sin o

—
—
~
<
1

z = &n

where x, vy, z form a right-handed, non-rotating rectangular coordinate
system, with the positive axis of =z coinciding with the earth's north polar
axis, x, vy lying in the earth's equatorial plane, &, 1n, ¢ are oblate
spheroidal coordinates, and c¢® 1is a constant adjusted to equal in magnitude
the strength of the quadrupole term in the earth's gravitational field.

Vinti demonstrated that the earth's gravitational potential could be approxi-

mated within £0.2 parts per million by a potential of the form

-£
2 — —
(2) v £2 + nBc?

This is in a form which permits separation of the Hamilton-Jacobi eqguation.
The exact analytical solution of the Hamilton-Jacobi equation yields six

ir Py

kinetic equations of motion, in terms of six canonical constants a
(i =1,2,3)

pg = % Ez + C2
_ ., NR(n)
pn - * 1 - ﬂ2
(2) o = B
t - a; = L1(€) + L2<ﬂ)
o +a, =-M(g) + My(n)
Ag = Nl(i) - Nz(ﬂ)
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where pE, ST pcp are the generalized momenta in the coordinates &, 1,

ul
o, and
~ 24 B qqu
L (8) = I—E——Lim—) , Ly(n) = czjm,
M (£) = +8.c2 [ de M (n) = B f al
: AN G 2l - A VR
d
(4) N, (E) = B, f ;17%%§7 ) Ny(n) = Bg J ;17§%=7=,

R(E) = B=2c® + (g2 + c®)(2B,8% + 2¢ - B),
R(n) = (B2 + 2B,1%c2)(1 - 72) - B2 .

These are the equations given by Vinti. For details, the original paper by

Vinti [Ref. 1 ] should be consulted. The two equations

1

t - ay L,(8) + L,(n),

H

g N,(8) - Ny(q),

are numerically inverted to obtain & and n. Since &, 1n, which are
"amplitudes" of vibration, do not exhibit a one-to-one correspondence with
the time, the actual inversion is to be done using angle variables which

do exhibit a unique correspondence with the time. With the appropriate
choice of transformations, the transformed equations exhibit a non-vanishing

Jacobian, which insures the existence of a unique solution.
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3., Reduction of the Elliptic Integrals to Standard Form

The integrals in (4) cannot be expressed by a finite number of elementary
functions. Two choices of attack are possible: (a) the integrands may be
expressed directly as a power series in terms of O(c®) and integrated, or
{(b) the integrals may be reduced to standard form. In the end, both methods
are essentially equivalent, except that the second method takes advantage of
the extensive literature on elliptic integrals, and is in a better form for

programming into a digital computer.

For example, by means of a transformation of the form
£t = a(l-e cos E)

with a and e appropriate constants, suggested by the analogous equation
in Keplerian motion, the integrals in & may be expressed as a power series

2 with coefficients which are functions of the true

in the oblateness term ¢
anomaly. However, when the integrals are reduced to standard form, fewer
terms in the series expansion are required for a given accuracy, and the inte-
grals may be evaluated in subroutines which are not much different from sub-
routines for the elementary functions, in terms of number of locations and

number of computational steps.

In the reduction of the elliptic integrals to standard form, a number of
choices of transformations are available. The transformations which emphasize
the parallel with Keplerian motion have been chosen. This has a number of
advantages, the important ones being: (a) the "physics" of the familiar
Keplerian motion is, in a sense, retained, since the equations of motion in
the elliptic integral formulation differ from the equations of Keplerian
motion only by terms of magnitude O0(c®?); (b) for far-distant satellites the
equations of motion degenerate smoothly into equations of Keplerian motion;

and (c) if products of the disturbing forces and c2

can be neglected, the
perturbation equations are identical in form to the perturbation equations

of Keplerian motion.
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a. Reduction of the Integrals L_(n), M (1), N_(1)

The integral Nz(n) may be written

(5) N (n) = ,__,_ 57 j\/ - qa e
Here qi and qz, the roots of R(7y), are
1 8(pg - BZIB4c®
(6) nﬁ,z =] [Bz - zﬁlcz] [1 + V/G + 0% - 2,207 J .

For a bound particle, the total energy is negative, i.e., Bi <0 always;

hence, q? , are positive and real. In the limit as the oblateness vanishes
5

(7) lim 4%

2_)0 12
qz > sin? i

where 1 1is the inclination of the orbit. Let qg < qi. Then the range of

the variable of integration is

(8) qg > 92 > 0.
The limits (7) and the range of variables (8) suggest a transformation
(9) N = f, sin u .

With this transformation, the integral becomes

(10) N (u) = Pe_ 1 Flu,x,)

‘_2[31 qi

where F(u,xg) is an elliptic integral of the first kind of argument wu

and modulus x,, with X, defined by
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2
3

(11) X2 = =
2 q‘%

The argument u 1is analogous to the argument of latitude in Keplerian

motion.

The remaining integrals in 1n become

LE(U) = \/T2—BI |:F(U: X2) - E(U: Xz):l ’

- Py 2
Mz(U) = ﬂic\/-_QEn(u, ey Xz) ’

where F(u, x5), E(u, x5), m{u, 02, x5) are elliptic integrals of the first,

second and third kinds. In the limit as the oblateness vanishes

1im Lz(u) -0,
c®~>0

cé{?O Mz(U) > tan 1 (cos i tan u) .

The last expression is the equation for the azimuthal angle from the ascending

node to the object in Keplerian motion.

b. Reduction of the Integrals LI(E), My (E), N4(E)

The homngraphic transformation

(1 + g COs vl

P (1 + s;cos v)

(14) £

emphasizes the parallel with Keplerian motion. The constants p, %, and sy
are chosen such that
p ~> a(l - e®)
lim I - o0
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where a 1s the semi-major axis of a Keplerian orbit and e is the eccen-
tricity. It is unnecessary to give the details of the transformation, since
a step-by-step procedure for the reduction of elliptic integrals to standard

form is given in standard texts [see, for example, Ref. 12, p. 180].

Write the polynomial R(%), given in (4), as
R(Z) = (28,0(8 -g)(E - £,)(E® + 258 + k) ,

where &,, &, are the largest, real, positive roots, with &, > &,.

, (63 - 83)

k = Ccx
2-8151?2 ’
1 (g, + &)

i = ot =,

2B, 2
A= g+ (B E) + ko,
B2 = (k-3®)(, -E)%,
C = A+ JAETBR ,

) o clgy - Eg)(Eg +5) - B?
(15 LT (g, - B (E, +3) +CR

(£, +E5)s; - (B4 - Ep)
(51 + Ez) - (51 - Eg)sl

B®
X{ = ®icE o
q - N 2C
H
NCR + B2 W - 2B,
q = p(% - 81> )
o
S = 2 i
l‘Sl \‘
\
\
-9 -
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The integral Nl(i) becomes
(16) Nv) = QBF(v, xg) -

The integral Ll(E) becomes

e 7*Q
(17) L,(v) = s D) [(1+82)s - 22DF(v,x,) + T DLe3(153) + x2]
sy sin v W1-x§ sin® v of
{ 1+ s, cos v ) E(v,xl)} 4 q{%gi_
q 2q
- (5?-1)[5?(I—X§) + X% ( ? ) } {]. S -s ’Xl)
Sy 1 _1(./5 *'x 1sm \Y )
T 1.8 [oE+ % tan N1 - x3sin v }

The squared modulus xi is a positive number of O(c®) for highly
inclined orbits; it vanishes for an inclination angle approximately equal

to 0.03 radians, and becomes slightly negative for equatorial orbits.

The integral Mz(v) may be expressed in terms of elliptic integrals
of the third kind with a complex parameter, but this form is poorly suited
to computation. A better form is that obtained by a series expansion.

Define the quantities

2
Qs

Ii = pézﬁ + sicz

. Qlq|
17 J(pBT —54cR)2 + pRcB(L + 54)7
N(pRd + slcz) + p2c3(4 - 51)2
(18) R2 - p2 + c®

-1 pc(£ + s1)
¢, = ten (p2L - s1c2)

_ _lpc('{)/-s)
9, = tan p 2T + slc

- 10 -
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The integral becomes

[e o)
— 2 -1 m .
(19) My(v) = Byc®l, + PR c E: <1n) R, sin(p, + mcpz)Cm
m=0
where Cm is the integral
N m
cos'” v dv
(20) cC = J .
m onN1l - x% sin? v

This is a standard integral, but the usual literal form [see, for
example, Ref. 13, p. 192] is poorly suited to numerical computation because
of the presence of a small divisor. A better form is obtained by a Taylor's

series expansion of the integrand. The results are

(21) ¢, = L (D) 6@y,

where Jvm is given by the recursive formula

_ 1 . v+l m- _

(22) Jom = v am [sin v cos v + (m 1>Jv,m—2] s
with

Jo = toy (v)
(23)

- 1 i av+1

Jvi = v + 1 M Vo,
and
. 2v_ - 1 1 . -
oy (v) = f sin®Y v dv = =55 tav-s (v) - 59 sin®V"1 v cos v ,

(24)

to(v) = v .

The series expansion (21) converges rapidly. The first four terms

yield an accuracy to eight decimal places.

_ll_
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4, Series Expansions for the Standard Elliptic Integrals

The elliptic integrals of the first, second and third kinds are (in

Legendre's notation) defined by

® de
F(CP: X) = IOJl -)(2 sinch )
4
(25) Elp, x) = £3~/l - x° sin® 9 dp ,
® do
(e, p?, x) =
¥ P X Jo (1 - p® sin® @) W1 - ¥ sin? ¢ ’

where x 1s called the modulus, ¢ 1is called the argument, and p 1is called

the parameter.

The integrals of the first and second kind may be defined by the series

expressions o
-~ .
Flo, x) = ) () ()" 1, (o),
(26) m=o
(0, x) = (% 2)m
E\(P} X/ — Z \m> (—X ) tgm ((P) )
m=0

where <;> stands for the coefficients in the series expansion of

(27) L+x" = ) ()",

m=0
and  t, (9) is defined by equation (24).

The squared modulus x® 1is O(c®), so that the power series expansion
converges rapidly. The first four terms yield an accuracy to eight decimal
digits.

The elliptic integral of the third kind is represented by two series,
each applicable over different ranges of the parameter p. For p? small

enough to insure convergence

- 12 -
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© M
m -y2\J
(28) w(o, 0% %) = ) ) )"y, o) (X),
m=o0 j=o
where t,. (9) is defined in (24). The practical range of convergence is

[Ref. 14].

[p?| < x* <1

L
2

When the magnitude of p2 is greater than Xz, the following series is used

[eo]
(29) w(p, p2, x) = Z Br; m o,
m=o0 .

where the Bé are given by [Ref. 13]:

{

(30) [o(m + 1)p?18,,, = [em(1 + p®) + 1B/ + (1 - 2m) B,

- (-l)m(§>t2m (@) - (-l)m<;%1> sin®™ 1 o cos o .

This last series is valid for values of p2 in the range
lp2| > 2)(2 ’

i.e., the series fails for nearly circular orbits and also for nearly
equatorial orbits. A practical compromise is to use the series (29) where
Lp2| is greater than 2x2 (e.g., for eccentric and for non-equatorial orbits)
and the series (28) when |[p®| is less than or equal to 2x® (e.g., for

nearly circular and also for nearly equatorial orbits).

With the proper choice of series representations for the elliptic

integral of the third kind, no singularities appear in the range
- < p? < 1.

This condition is violated for
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The first of these corresponds (approximately) to an eccentricity greater than
or equal to unity, and is of no interest here. The second corresponds to a
polar orbit. The difficulty appears in the first term in the series expansion
for ﬁhe elliptic integral of the third kind in the parameter fye This inte-
gral appears in the equation for ay» and is multiplied by the constant Bz'
The limit of the product of Bz and the integral vanishes everywhere except

in an infinitesmally small circle about the poles

lim T

121 Bomlu, 92, x,) = 0O, uf ey .

For wu =ﬂ=§ , the product is indeterminate. This singularity is a reflection
of the fact that the celestial longitude is indeterminate in the neighborhood
of the celestial poles. If the position in the neighborhood of the poles is

not required, then no difficulty arises for polar orbits,

5. Periods of the Motion

When the coordinate & goes through one vibration, the argument v
increases by 2m, and the time increases by one period. Similarly, as each
argument u, 9 increases by 2n, the time increases by an amount equal to

the periods in these coordinates. Define the periods

T1 to be the time required for v +to change by 2n ,
T, to be the time required for u +to change by 2xn ,

Ts to be the time required for ¢ to change by 2m .

The frequencies of the motion are given by

(31) v, = , (1 =1, 2, 3) .

Define the action variable Ji by the integrals

-
[y
1]
o
s
Ny
o
~

(32) J

LY
I
o
o
o
=

<
o
Il
o
e
Q.
6
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Then the frequencies of the motion are given by [Ref. 15, 16]:

OH_

(33) Vi T 83,

where H 1s the Hamiltonian. Since the J; are functions of the Bi

(i =1, 2, 3) only, then the variations of the J; may be written
° 87,

(34) dJi = E: éﬁf dBj s
J:1

where the Bi only are regarded as variables. These equations have a unique

inverse, so that

(@]

P54
0J. i
1 J

™~ o

(39) By =

can be found. Noting the B; 1is the total energy, i.e., Bl = H, then

only the first equation of the set is required to find the frequencies, thatis

(36) B, = ) v, I .
i=1

Thus the periods can be determined from the kinetic equations of motion by

means of these equations and simple algebraic manipulation. The results are

N1(2ﬂ>
T, = Ly(on) + Rem) L,(2n) ,
N2(2n)
(37) I, = N_(2n) T,
2n Tl
Ts = N (20) ’

N;TEET M2(2ﬂ) - M1(2ﬂ)

where the Li’ Mi’ Ni are the integrals defined in (4), and T,, Ty, Tj
are defined above. Series expansions for the periods are readily obtained,
but do not appear to be worthwhile, since each of the quantities appearing is

computed during the computation of an ephemeris.

- 15 -
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6, The Numerical Inversion of the Kinetic Equations

An approximate analytical inversion of the equations (3) may be per-
formed with the aid of the Jacobian elliptic functions. However, in the

formulation given in this report the inversion is performed numerically.

Define the integers n and m by
t

-t -
k o)
n = G. I. [————-——]
T1 ?

t, -t
m = G. I, [—KT———QJ ,
2

(38)

where G. I. [ ] is to be interpreted to mean "the greatest integer of,"

and to, ty, are arbitrary reference times. Define

T

ok = (t_ - t) +ay +nlg(2n) + mrp(2n)
* = - -
(39) Q a, - nM (2n) + mM (2n) ,
wk = - ag t nN,(2n) - mN2(2ﬂ) .

The equations (3) become

(t - tk) - 0¥ = Ll(v) + Lz(u)
(40) o - = - M (v) + M (u)
- uw* = N (v) - Ny(u)

The first and last of these equations are inverted numerically to obtain

u and v at a given time t. The Jacobian of these equations is given by

l+£ cos v)2

ng
(41) 3 { +Qn e sin?ul
V—QBlrdl X%sin Vth x sin®u c(l+sycos v)*® 1%z

The Jacobian is different from zero everywhere. This is a sufficient condition

to insure the existence of a unique inverse to these equations.

- 16 -




Final Report - Project A-478 - Georgla Tech EES

In these equations, if the reference time tk is fixed, the "elements"
o*¥, QFf, and * remain constant, and the arguments u and v increase with
time. To avoid overflow of the computer registers, the reference time may be
changed from tk to tp4; at invervals. The elements o¥, F, * will be
changed at each change of reference time. If the reference time adjustment 1is
made after each revolution of u and v, the elements o*, %, w* will,
to a good approximation, be equal to the time of perigee passage, the right

ascension of the node, and the argument of perigee in perturbed Keplerian mo-

tion.

At time t =t , from (38), (39) and (40),

ok = Qg
(42) & = -a,,
wko= - ag .

Therefore, the canonical constants a,, a5, « are not independent of the

3
reference time, so that a specification of the canonical constants without a

reference time is meaningless.

7. Orbital Elements

The choice of a set of "elements of the orbit" is not arbitrary. A
choice dictated by the operational demands of a tracking complex, for example,
might be entirely different from a choice based upon other considerations.

A number of factors enter, the more pertinent of which appear to be
(a) the information content,
(b) computational convenience,
(c) physical and geometrical significance,

(d) general usage,

all of which must be placed in proper relationship to the controlling criteria

of simplicity, overall objectives, and so on. More esoteric considerations

- 17 -
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may well be appropriate in an analytical study, but hardly appear contributory

to a computer-oriented presentation.

To illustrate the variety of choices available, consider the semi-major
axis a. In Keplerian motion, the semi-major axis is simply related to the

total energy, therefore, by analogy, one definition might be

R
2B1
In Keplerian motion the semi-major axis is also the mean sum of apogee and
perigee distance; hence another definition
E1+€2

@ = T

where El and €2 are the maximum and minimum of the coordinate & (i.e., the
roots of R(E) = 0). Similarly, another choice is

+
1‘1 1‘2

s 2 T

where 1 and r, are radial distances. Here two choices are possible:

1)
(a) wusing the relationship between the polar coordinate and the coor-

dinates

- 2 2 _ me
Ty,p = JEl,z + c2(1 - n2)

then (a) r,, T, may be defined as those values at maximum and minimum of &,
where the value of 1 is quite simply determined, or (b) r,, r, may be
taken as the true maximum and minimum or 1r, where the values of &, 1 are

not so easily determined.

Since the semi-major axis is related to the anomalistic period in Keplerian

motion, this also yields a variety of choices.

Each of these definition$ yields nearly equal numerical values for the

"semi-major axis," and one or another may be adopted with impunity.*

*If each of the above definitions of a is expressed in terms of the period of
a Keplerian orbit, the range of the values is about four seconds of time for
the satellite Explorer 1IV.
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If consistency is to be maintained, the choice will affect the definition of
the eccentricity. Certainly the numerical value of the eccentricity will be
affected, and the time variations of both elements under perturbing forces

will be affected. It is not known whether this last is an important consid-

eration in maintaining precision.

The set of elements which appear best suited to the objectives of this
report are the osculating Keplerian elements. They have the advantages of
simplicity, of easy physical and geometrical interpretation, and of antiquity
of usage. They contain the maximum amount of information about the motion
which can be given independently of the physical model. By obtaining the "best
fit" of the path to observations during successive time intervals, the "time
variation" of the osculating elements may be obtained. These time variations

are of greatest interest in the study of physical models.

8, Computation of an Ephemeris

The principal steps in the computation of an ephemeris are

(a) the computation of the canonical elements from initial conditions

at some starting time,
(b)  the computation of &, 1n, ¢ at some other specified time.

The computation of the canonical constants is conveniently made using
geocentric rectangular coordinates. The equations for Eo’ no, Py at the

starting time to are

- 222
A N =

(43)
_ 1 2 - c? A 472 c?
Inol T cR w/[ 2 {l - w/l * (r2 - 2 } ’
¢, = tan™1 —%— s

where x, vy, 2z are the geocentric rectangular coordinates,

(44) 2 = xR+ yR + R,

_19_.
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and ¢ 1is the small constant

2 - 2
c 3 J

1

1.082 x 1078 .

The coordinate EO is always positive; the sign of the coordinate i
is taken to be the same as the sign of z. The usual quadrant checks are used
in the computation of Por In practice, the radical in the expression for
|qo| should be replaced by a power series in ¢® +to avoid loss of signifi-

cance in single precision computations.

The generalized momenta are computed from

nczi + Err

Pe = TER 4 E

_ &z - qrt
(45) pq - 1 -n2
pcp = xy - yx,

where the dot indicates the time derivative, and
(46) rto= ox%x + yy o+ o2z .

The canonical constants B1’ Bz’ 53 are obtained from

_ Llys o &
By = 2V° -3 22
1
p2 o
Be = {1 - 02 + T2 - 2B PP |
where
V2 = %R+ ¥R+ 3R
(Note that pz is not used when the Bi's are expressed in this manner.)

- 20 -
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The computation of the canonical constant « a d, proceeds as

1’ 2’ 3

follows:

(a) the roots Ei, Ez’

(b)  the intermediate constants j, k, A, B2,

12 1, Ps X?_, Q aq, s?, I Bs Ry, @s 95,

(c)  the argument

v = cos™? p- %
Slz; _ p2 ’
with quadrant check,
Sign of py: ‘ + ‘ + I - -
Sign of cos v: + - - +
Quadrant of V: I 11 III IV

(d)  the integrals L,(v), M,(v), N,(v),
(e) the roots Ny g
(f)  the modulus Xg’

(g) argument

u = sin”?! l—l R
N2
with quadrant check,
Sign of pn: |+ | - | - +
Sign of 7 + + - -
Quadrant of u: I 11 111 1v

(h)  the integrals Ly(u), My(u), Ngy{u),

(1)  the constants Uyy Qgy Oy

- 2] -
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The determination of the coordinates at some other specified time t

requires the numerical inversion of the equations

(t-t)-a = L (v) + Lg(u) )

ag Ni(v§ - Ny (u) .

This may be accomplished in a number of ways. A Newton-Raphson procedure

works well in practice. Define Vj’ uj to be the jth trial values of v,

corresponding to values a,., «

13 35"
_ av _ v -
Vipg TV + (aaiv(al alj) + <6a3> (ag a3j) ,
(49)
_ v av_ -
g = oy (B ) (2 (g - s

where the partial derivatives are given by

av_ v/l - x3 sin® v v _ ﬂgcgwfl - x5 sin® v
o, A+ PR o Be(Z + PE)
(50)
- v2 ¢5in” _ w2 &ipl
du . V/l X5 sin® u Bu _, g2 /1 X5 sin® u
- - 3
oa (2% + nBc?) 7 0az N2B R ny(ER 4 nRcR)

where &, 1 are determined from the jth trial values of wu, v .

With these values of wu, v, the coordinates &, 1, o, P > pn, pcp
may be obtained. With the transformation of these coordinates to the appro-
priate reference frame (e.g., range, right ascension and declination, or

azimuth, elevation and height above geoid, etc.) the computation is complete.

- 22 -

Then the (j + 1) trial value is given by

u,
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9. Approximate Expressions for the Kinetic Equations

Values of the small quantities j, k, 4, xi, x§ are at most O(c®).
For example, for an earth satellite in an orbit similar to the orbit of

Explorer IV near the date of launch,*

i ¥ -2.2x107°
k 2 6.5%x10°
I = -35x10°
X3 = 8 x 1078
Xi = 5 x 107%

Simplified expressions for the kinetic equations are obtained by ignoring

squares of these small quantities in the nonsecular terms.

It is convenient to express the results in terms of an angle variable
analogous to the eccentric anomaly in Keplerian motion. Make the transfor-
mation on the angle v

cos B¥ - g4

CcOSs  —
v 1 - s4C0s px
(51)
- 2 1 %K - 2 . 2 E":
sin v 1 - X2 sin® v _ N1 §7 sin E N1 - X7 sin °
! 1 - s, cos E*

Substituting (51) into the homographic transformation (14) yields

(s, - 1)
= * - *
(52) g a*[ 1 —E—j—zg: cos EX] ,
where a* 1is defined by
€y T &y
(53) a¥ = 5 .

*

The units are such that (G®M)/R® =1, where G*® 1is the universal constant
of gravitation, M is a representative mass of the earth, and R is a
representative earth radius.

- 23 -
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The integral L1(€) defined by equation (4) becomes

(54) L,(8) = a*"aJT - o2 {F(E%, x ) - [2(€1; zj> - sy Cy(E¥)

&
£2(1 - Si)z cos® E* JE*

+ g ! ’
(1 - 4s)% '[ (1 - sycos E¥) N1 - x§ sin® E*}

where CI(E*) is defined in (20).

The last term in (54) contains a secular part. However, for arcs of
about 100 revolutions or less, and for si < 1, this term is less than 10~

in magnitude. Omitting this term from (54),
(55) L(E) = == [F(E4x,) - e*C_(E¥)] + O(42) ,
1 n* 1 1

where n*¥* and e¥ are defined by

n* = (a%°Q.1 - s‘?_)—l ,
(56)
£, - ¢
e* = 2 <—1—2-> - 51 °

€1 T Eg

Omitting terms in xi from (55) yields

2

*
(57) L (8) = —l'{E* _ eksin B + == [E* -sin Efcos B* + 20 sinBEX]} +0(x:,42).
1 n* 4 3 1

If justification exists for retaining higher order terms in xi in the
secular parts of (54), while omitting the term in 42, this can be done by
modifying (57) to include the complete elliptic integral of the first kind

evaluated to order xi, ice.,

2 94
2 - Xg , X1y o(xe
T Kxg) = 1+ X1) -

- 24 -



Final Report - Project A-478 - Georgia Tech EES

Thus (57) becomes

(58) L,(¢) =

The integral L,(n)
elliptic integral of the second kind from the elliptic integral of the first
kind, term by term. The result,

(59) L (1)

2

2K (%)

2

1 X *
— < ) E%* - e% gin E*- i sin E*(cos E*-—gg— sin®Ex) + "“}
n* T 4 3

~

Terms in Xg have been retained in the secular part of (59).

The integral Ml(z)

(60) M () =

B,c*Q 2pC. (V)
p2‘+ c? { Co(v) * p<51 -4 [pz i c?
(3p2 - Cz)p'[), - ps_l(pz - 3¢?)

(p2 + c?)2 } G,V

4p(p? - BNpPE - Bsh) - pls[(p2 - B)2 - 4p7cF]

(p323- p)ﬂczsi)(5p4— 10p2c2-c4) - (ngzsl+ Czsi)(ps_ 10p3c2t 5pcd)

(p2 + c2)3

2
(~[;Eé%§;> (é?> {(l + gxg)u - sin u cos u + 000} i

3 Cyv)

defined in (4) can be reduced by subtracting the

defined in (4) 1is conveniently reduced from the form

71,

(p2 + 02)4

where the Cm(v) have been defined in (20).

Omitting terms in c%, <24, 22, and czxg, then (61) reduces to
S1
(62) Mi(E) = _pT { V(l + — + °°°) + 251 Sin v + e } .

The integral Mz(q)

~ 1
(63) Mz(q) = {—/_—E}{,\/l_-ag

Bzc®Q

2p

to terms of order x% is given by

2
-1 X
tan (\/l—qg tan u) (1l + 53% + oo
yl
2

- 25 -
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2K(x1) X3

v - = sin v ¢cos v + ose. o
4

(64) N, (8) = Q Bufl

The integral Ny(#f) 1is given approximately by

2K(x.,) 2
(65) Nz(q) = ﬂ1CBs{[ X2 Ju - é? sin u cos u } .
- 281 T

The transformation between E* and v given in (51) may be conveniently

written in the form

(62) J1 - s?nJi - x% sin® E¥ gin E* (1 - sy cos E¥)
64) tan v = o
Af(l+-s§-2sl cos E¥) - Esi(l— xi)+~xi]sin2 E* (cos E* - 51)

To the order x?, this becomes

s  sin® E¥ cos E*(2-—s1 cos EX¥)

- [T 7 (_sin E* X1%1
(67) tan v 1 - 8§ <cos r— s) (l + (1 - s, cos K ) .

Thus for small eccentricities (i.e., Sy << 1), the well-known "half-angle

formula" applies, that is

1+ s E%*
vV ~ /"1 kil
(68) tan 5 = /7T 5, tan = .

Approximate values of the constants are given by

() = () ) e
1 2 1-2
E- 5 43 3k .
(70) e* = (-zi:—;;) (1+ o +J52-+ e )+ o(3k) ,
) £+ 6, k(& -E)
(71)  J-2B,Q = 5152 [ v (2= E ——3)(5 + —jiiﬁir——>] + 0(k?) ,

where j,k are defined by (15).

- 26 -
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10. Coefficients for Differential Improvement of the Orbit

The differences between the observed and computed positions of the object
are to be used to obtain improvements in the constants of the motion. The

linear equations which are to be solved are of the form

™
dal
da2

(72) {a(0-¢)} = {T}J P

B,

-

where {A (0 - C)} is a column matrix whose elements are the differences

between the observed and computed positions of the object, {T} is a matrix
whose elements are partial derivatives of the coordinates of the object with
respect to the constants of the motion, and dai, daz, oo st are (small)

corrections to the constants of the motion,

Throughout the following, it is assumed that a solution to (72) can be

obtained.

The purpose of this section is to present the elements of the matrix {T}o
While in principle these elements are easy to obtain, the actual expressions
are quite lengthy. This leads to "bookkeeping" problems. To simplify the
presentation, the results are recorded as a number of matrices, each of which
contains the results of an intermediate step. The final equations may be
obtained by multiplying these matrices; if, indeed, this is done, it will be
found that only a few minor cancellations and simplifying combinations result,
so that the matrix representation is reasonably economical. Some loss in
computational efficiency no doubt results if the computer coding is carried
out directly from the matrix representations, but in view of the other advan-

tages, the loss in efficiency is not believed to be important.

The residuals may be obtained by subtracting the computed values
from observed values. However, an approximate, more efficient procedure is

provided by the equations

- 27 -
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p cos éw (x-X)sin ® - (y-Y)cos ©
{A (0 - c)} = pdd = =<[(x-x)% + (y-Y)QJ%Ein B - (z-Z)cos B
de _ Pobs ~ comp
where

X, Yy, 2z are computed geocentric rectangular coordinates of the object

at the time of observation;

X, Y, Z are computed geocentric rectangular coordinates of the observer

at the time of observation;

8, B are observed right ascension and declinationj

p 1is the slant range from observer to object.

If the slant range is not observed, the last row in the column vector is

omitted.

The residuals must be transformed into oblate spheroidal coordinates.

Define the rotation matrix {Tl} by
- sin §
{6(0-¢)} = <- cos § sin B

cos 6 cos B

Define the rotation matrix {Tz} by

- sin 6 sin B

sin 6 cos B

- 28 -

r' I — Xt - xn

dx £7 1 2 1 -2
y& -

-J‘ dy ~ = < 52 + C2 1 _Y;IE
(92 W ¢

cos ©

0 dx

cos dy
sin B dz
=N
g |
- < dn -
J %
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Thus, the residuals may be written

(76) {50 -c)}

A-478 - Georgia Tech EES

dg
|
do

Q.

= {T1} {Tz}

where {T }, {T,} are defined by (74) and (75).

The differentials in the oblate spheroidal coordinates are related to

differentials in the constants of the motion through the kinetic equations.

Write the kinetic equations in the form

N

(t -t)-aqa

(77) «

i

Gg

Differentliate both sides with respect

explicitly. The resulting linear equations have a unique solution:
p -
dg -da g ~day
)
(78) dng = {1} ({134 day p - {1} { dmy B,
!
de dar dar,,
L a
where {Ts} is the matrix defined by
o 2.2
(24 ¢®)p 0 Lo (g4 c®)p
£ Bs g
1
(79) {Ts} = e (1 - n%)p, 0 -£2(1 - n®)p
R o2 - 4,2
c 2
‘—E&_z‘" - (E2 +n2c2) i [ : -
(2 + c®) Bs 1-12 " 24 2

N

LBy, ©) + L (B 1)

2 = ~M (B E) + M(B, M) - o,

NI(Bi’ E) - NZ(Bi’ ﬂ) o

to the coordinates, as they appear

- 29 -




Final Report - Project A-478 - Georgia Tech EES

{I} is the unit matrix, defined by

0
{1} = <0 1 0p ,

0O 1
and dai, da;, daé are total differentials in a,, a,, @, ZIegarded as
functions of Bl, Bz, Bs only, that is,

/ : aaj
(80) day = z op. B; » (3 = 1,2,3) .
i=31

The daj, dag, dag
Using equations (58), (59), (62), (63), (64) and (65), the kinetic equations
(77) may be differentiated with respect to the constants which appear explicitly.

The result is the 3 X 12 matrix {D(m, n)},

are to be expressed in terms of the dB,, dB,, dBg-

— -

dB,
B,
4B
d(n4c)
dn

day 2
(81) da, » = {D(m, n)} < da’,k ;— ;
7 dQ
ds1
de*

dx?

dXZ
dp

e

where Q' = (Q~/- 251’).

The first column of {D(m, n)} is made up of elements which are the
(explicit) derivatives of the kinetic equations with respect to B1’ the second
column is made up of the derivatives with respect to B2, etc. Listing by

column and by element:

- 30 -
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l1st column (Bi):

t - to - ay b(2 1y =
D(l,l) - - 281 H -
2nd column (Bz):
D(1,2) = 0 D(2,2) =
3rd column (B ):
D(1,3) = 0 D(2,3) =
4th column (nlc).
L,(n)
D(1,4) = e D(2,4)

5th column (qz):

- Georgia

az + ¢
2B,

a, + 9

B2

Q/l -n% tan u) x%

Tech EES
a
2
D(3,l) = T28
1
D(3,2) = 0
O
D(3,3) = B,
N, (n)
D(3,4) = ngc

.
D(1,3) = © D(2,5) =:1ﬂ T 2B }1[ T2)8 2 [ﬂ 2q ” 2)]J
2
__g
28 )
D(3,5) = 0
6th column (a*):
2L, (%)
D(1,6) = — D(2,6) = 0 D(3,6) = 0
7th column (Q'):
L,(g) -M, (€) N, (%)
p(1,7) = —gr— D(2,7) = —r— D(3,5) = ——

- 31 -
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8th column (s,):
- lel(E) Ble c?
= = + inv4 cee 3 -
D(1,8) T -2 D(2,8) —c psfv 4psinv ] D(3,8) =0

9th column (e*):

-G (B sinex X3 2 ) B
(1,9) = ——x—F% S [1+ 2 sinfEx+ .-.] D(2,9) =0 D(3,9)=

10th column (x%):

1 *
D(1,10) = e [(1 +%X§)E*-sin E*(cos E*-% SinfE*) + oo ] D(2,10) =

Q'Bs

D(3,10) 27f=§E= [(1+ %xi )V - sin v cos V t ces)
1

I

11th column (xg):

MN4€ 3
D(1,11) = 1+2%2) u - si + oo
(1,11) m[( 7 X2) u - sin u cos u ]

Bs tan—lﬁ/l- ng tan u)
D(2,11) = - [ 2 , u]
N - 2By ﬂ% V1= ﬂz
D(3,11) = ;—;:ggzg:f(l + % Xz) u - sin u cos u + °°*°]
1 - 1

12th column (p):

2My(8) s, c?B,Q'v
D(1,12) = O D(2,12) = + A2 ... D(3,12) =

P 2“_28193

The constants appearing explicitly in the kinetic equations are in turn

explicit functions of &y, &5, J, k, *-° .

Define the matrix {Dl(m, n)} by

- 32 -
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de ~ d51 Y
dﬁa dg,
d(n,c) P,
dﬂf d(n,c)
da _ !
(82) N {p’ (m, n)} < 9 -
dg
1
d51 d€2
de* .
2 dJ
g L ak
dXz

The matrix {D’(m, n)} is conveniently partitioned intoc 3 X 3 submatrices.
Define I to be the 3 X 3 wunit matrix, and O to be a 3 X 3 null matrix.

Then write

(1 0 o )
0 a' (2,2) d'(2,3)
(83) DI( ’ ) = B
(0" tm, ; 3 0 da’'(3,2) d'(3,3)L-
0 d'(4,2) d'(4,3)

Define the functions

H2 = €% + 2358, + &k,
H2 = €% + 258, + k,
(84) ’El - €2>2 /2 251
g, - €2 2 5 251
6, = (A2 q® - —1o .
2 2 (1 + s%)

- 33 -
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The submatrices are given by

(85)
(86)
(87)
(88) 4'(3,3)
(89) a'(4,2)

1

a’'(2,2)

d’(2,3)

il

—
0 0
1 0>
0 1
-
—_
0O 0
0 O
0O 0
€y T30 T
_%—<1H2>
1 s° E, + ]
<21>(1H§> >'
1 -s2 &, + ]
a*z ( 2 1>< iHi >

(-1 LG YA
2><“J> S GG
D EO@ D OG-
(0 o (EHet e B
o o (l;s1>_( g)(léi)(zlﬂ)

- 34 -
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f—
-(gr8y) 2 (g+3) G618y Goty 6y G
2 2 HZ H2 HZ T 2HZ © 2H3
(90) a'(4,3) = 0 0 0
<1+s1> X (£ 8, (1-s8)(85+3) -(Er &) (1-s§)<ﬁ_3> -(61—52>(1-s“j)<Hi
2 4HZ 4 HZ HE 8 2
N—

As the last step, define the matrix {D(m, n)} by the transformation

f’dBi )
dB,
B3
dn,c dB,
d€1 d3 4
dEz
dj

Ldk -/

Define the quantities

4 = 1

i 7 on,[28,cR(1 - 213) - B<]
(92) i 1 i B
1
9: =
i (85 + c®)(2B,&; + 1) - E;B3c?

The elements of {D”(m,n)} are given by:

- 35 -
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—

,m 33

mmmﬁmu +23)

P64 (50 +m$

“p(gL - 1)%d

T

%-mww

+

I

2
_memﬁmo +22) +

2
T8 5(e + 2|5
% 2(z° +53)%¢

T 4(e0 +§2)%9

P(gb-T)%d

—

x e
{ + 2 Ben2
%NE > +89) ﬁ by(g° +232)%% +
T, 2o ToT T
X - ww@m 2% Thp(po +5)F3 4 I -
15 e 1
(0 +£2)
[Po(eo+ &) + (%6 2(2 +E0)8a +
- ) T
%6 (40 +35 = c_ - 6y (20 +muvw&% + %
gz
%6 (g0 + §2)20%0 “Ba(2° +52)52 -
B30 +33)50°d - F6a(20 +£3)E3 - > = (uw),a (g6)
“p®y ®P(5L - T)gleo -
Told Fp(3l- T)Fbeo -
0 0
T 0
0 T

- 36 -
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The equation (72) can be written

day 484
(94)  {p(0-c)} = {rl}{rz}{rs}[{z}{daz - {1}{p(m,n) }{! (mm) H{o" (mym)} { B, b
detg B3

If the corrections are to be made on elements a, e, 1 (semi-major axis,
eccentricity, inclination) which are defined in terms of the Bi only, an
additional matrix multiplication will be required. The elements of the next
matrix will, of course, depend upon the definitions. If the elements proposed
by Izsak (Ref. 10) defined by

E1+€2

a = —
2

E1‘*’52

e = ===

€1+52

i = sin-llqzl

are used, the matrix «{D”(m,n)} is simplified.

- 37 =
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11, Variation of Constants

The differential equations of motion may be written in the form

: OH_

Py ¥ o, Fio

(95) (i = 1’2:3) 3
o oH _
9 - 6pi =0

where p;» q; are the generalized momenta and coordinates, and Fi is the
generalized force acting along the ith coordinate. The equations (3) are to
be regarded as solutions to (95) with Fi = 03 these solutions may be written

in the form

1,2, «o. 6)
1)2,3) 2

1l

(i

1]

where the Cj are the constants of motion. The solution to (95) may be
constructed from the solutions (96) by the so-called "variation of constants™
method.

The results may be written

8
S oH
1=

Write the equations for the Bi in the form

B, = H
(\98) Bz = p(p
pe o
By = (1 -12)p2 + @ _ - 2HnC?
3 yl 1 - 12

Write {VP} for the matrix whose elements are derivatives of the Bi with

respect to the momenta,

- 38 -
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r—.

—
B,
(1-n2)(E2+c?)

1

ER - nZCZ +c2
B5(1 - 1n?)(E3+-c?)

PR

—
€2+ C2 1 - f12
£2 + 22 Pg 2+ n2c2 Pp
(99) {vp} =< 0 0
_n2C2(€2+ C2) Ez(l‘ﬂz) |
B, (£2+ 12c2) & g (824 o2cR) P
\—
The differential equations for the new "constants of motion" are given by
™ ™ )
F
B1 £
100 > = {v -J F
(100) B, v} < F,
B F
3 P
» NI

The differential equations for the a;, as a function of time are obtained
in the same manner. The results are
— — —_
(101) < a, r = {D(m,n)} {D'(m,n)} {D"(m,n)} {Vp3}< oo
ag F@
— —
where {D(m,n)}, {D’(m,n)}, {D”(m,n)}, and fV(p)} are given by (81),
(82), (91), and (99) respectively.
The generalized momenta are given by
Fq sin va/ 1 - X§ sin® v R
Pr Q (82 + ¢®) (1 + sq cos v)
( 15 cos uN'l - x5 sin® G
102) -{ p _ =< . a
! ?P = J-—Qqulc (1 - 13)
P Pz
&3 _ |
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The generalized forces are related to the forces acting along the

Xy, Y, 2z axes by the transformation

S | ; (_ _W
]
Bl . . XE »\ ¥E (€2 + c2)
. 1
pS-. 18 - - -
(103) 4 Fn?' .<£§ + qzcz)-{ x1 1 £(1 - n?) >~
' : £2 + n2c2 £2 +qRcR
FCP AT -y<E§+C2)(l 'ﬂz)) X((Ez‘l" Cz)(l -1"2)> O

If the forces F, are sufficiently small, the terms of 0(c2) may be
put equal to zero in the equations (lOO), (lOl), (102), and (103). The
results correspond to the equations given by Moulton(Ref. 17) with the

substitutions

B, - - —
1 2a ’

By, Ja(l - €®) cos i s
Bg_’\'a(l"e))

8/2
1 -63/,

a %-Q’

asé_w,

where the symbols are those used by Moulton.
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